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Abstract

In a previous paper, we provided a rationale for the empirically observed St–Re number relationship for vortex

shedding in bluff-body wakes. This rationale derives from a mechanism of vortex formation observed in numerical

simulations coupled with an estimate of the terms in the vorticity transport equation based on this mechanism.

Adopting the typical size of the body D as the characteristic length scale resulted in a rationale which matches the

traditional 1=Re-fit. Here, we propose to adopt the thickness of the separated shear layers as the length scale which

governs the diffusion of vorticity during the vortex-formation process instead of D. Thus, providing a new rationale

matching Williamson–Brown’s 1=
ffiffiffiffiffiffi
Re
p

-fit, which has one order of magnitude less error than the traditional fits in terms

of 1=Re.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

During the past five decades, there have been extensive measurements which yielded different coefficients for the

Strouhal–Reynolds number relationship for the laminar regime of vortex shedding in bluff-body wakes. Those fits

generally follow the lead of Roshko (1954), who plotted the parameter Ro ¼ StRe ¼ fD2=n (where f is the shedding

frequency and D the characteristic length of the body) versus Re. Ro is now known as the Roshko number. Roshko

(1954) found a linear least-squares fit for the Ro–Re plot, which gives a St–Re relationship in terms of 1=Re,

St ¼ A� B=Re. (1)

Following Roshko’s work, many curves of the St–Re relation were published, often showing little agreement between

them, and a controversy started about the nature and place of the several jump discontinuities in the data that were

observed. This long-running debate was largely resolved by Williamson (1988a) who found that manipulating the end

boundary conditions to enforce parallel shedding, the resulting St–Re curve can be made continuous throughout the

laminar range ð49oReo178Þ. It is now believed that this universal parallel-shedding curve represents measurements for

purely two-dimensional vortex shedding (Williamson, 1989).
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More recently, Fey et al. (1998) showed visually that a plot of St versus 1=
ffiffiffiffiffiffi
Re
p

for the laminar regime resembles a

straight line. The same year, Williamson and Brown (1998) put forward a new St–Re relationship for the cylinder wake

in terms of 1=
ffiffiffiffiffiffi
Re
p

which has one order of magnitude less error than the traditional fits in terms of 1=Re. Following the

same line of reasoning as Lord Rayleigh, who suggested that St can be expressed in terms of a Taylor’s expansion of

1=Re (Rayleigh, 1915), Williamson and Brown (1998) proposed a series expansion in terms of 1=
ffiffiffiffiffiffi
Re
p

St ¼ Aþ B=
ffiffiffiffiffiffi
Re
p

þ C=Reþ � � �
� �

. (2)

By truncating the series (2) to the first two terms, Williamson and Brown (1998) found a least-squares fit for the laminar

shedding regime using the parallel-shedding data from Williamson and Brown (1988a, 1989). They obtained the

expression St ¼ 0:2665þ 1:018=
ffiffiffiffiffiffi
Re
p

and compared it with the traditional two-term fit St ¼ 0:2175þ 5:106=Re for the

same experimental data. Fig. 1, taken from Williamson and Brown (1998), shows that the ‘‘
ffiffiffiffiffiffi
Re
p

-formula’’ lies much

closer to the experimental data than the traditional 1=Re-fit, giving an average fitting-error of 0.0006 compared with the

0.0021 of the traditional formula. As shown by Wang et al. (2000) present data collapse quite well on the Williamson

and Brown (1998) curve, except for the data near the critical stage. The deviations between the Williamson and Brown’s

two-term equation and the Wang et al. (2000) data for the unheated cylinder are less than 1% in the whole laminar

Re range.

Williamson and Brown (1998) also proposed a connection between the 1=
ffiffiffiffiffiffi
Re
p

-fit and two length scales: the wake

width (L�), and the vorticity-thickness of the separated shear layers (do). They give a physical interpretation of theffiffiffiffiffiffi
Re
p

-formula in which the constant term A is due to the size or physical shape of the body itself, while the following

terms in powers of 1=
ffiffiffiffiffiffi
Re
p

are associated with the shear layer thickness.

Theoretical models for the St–Re number relationship have also been introduced. Ahlborn et al. (2002) proposed a

phenomenological model for vortex-street formation downstream of a bluff body based on the analysis of the mass,

momentum and energy balance, giving relationships between the Strouhal, the drag coefficients and the Reynolds

number. Roushan and Wu (2005) proposed a new St–Re relation based on the observations of the structure of a vortex

street in flowing soap films, suggesting a two-parameter form St ¼ 1=ðAþ B=ReÞ to describe laminar vortex shedding.

In a previous paper (Ponta and Aref, 2004), we put forward that the empirical St–Re fit is quite natural and follows

readily from an elucidation of the vortex formation mechanism observed in numerical simulations and an estimate of

the terms in the vorticity transport equation. This estimate was based on the adoption of D as the characteristic length

scale which governed the physical processes involved. That resulted in a rationale which matches the traditional 1=Re-

fit. Here, we propose to adopt do instead of D as the length scale which governs the diffusion of vorticity across the

separated shear layers; thus, providing a rationale based on the vortex-formation mechanism which endorses the

1=
ffiffiffiffiffiffi
Re
p

-fit.
Fig. 1. Comparison of the two-term ‘‘
ffiffiffiffiffiffi
Re
p

-formula’’ versus the traditional 1=Re-fit for the experimental data fromWilliamson (1988a,

1989). [Taken from Williamson and Brown (1998)].
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2. A 1=
ffiffiffiffiffiffi
Re
p

-rationale for the St–Re relationship

In our model, we assumed that the shedding period is somehow related to the time needed to ‘‘nucleate’’ a vortex,

which will subsequently take its place in the vortex street wake. Eddies are not shed directly from the cylinder but are

formed downstream by the wake instability. This is accomplished by a gradual roll-up of free shear layers emanating

from the cylinder (Kovasznay, 1949). It is clear that the roll-up plays an essential role in vortex formation. The key idea

of our work is the decomposition of the velocity field obtained from DNS computations in its solenoidal and harmonic

components. This decomposition allows us to clearly identify the eddy structures the shear layers are rolling-up around

during the process of formation of the vortex cores.

Identifying the eddy structures represents a challenging issue. The topology of the velocity field strongly depends on

the choice of frame of reference. If the observer moves with the cylinder, incipient eddy structures can be observed in the

vicinity of the solid surface, while the far wake shows wavy streamlines and no eddies. Conversely, if the observer is

fixed in the laboratory, the typical pattern of streamlines associated with a vortex street appears in the far wake, but the

pattern of streamlines in the vicinity of the cylinder appear distorted [a good example can be seen in Batchelor (2000,

plate 11)]. Thus, the choice of frame of reference influences the observations and any conclusions regarding mechanism.

Moreover, for an observer moving with the cylinder, it appears that the eddies are advected downstream from the low-

speed zone in the vicinity of the cylinder until they reach a steady advection regime in the far wake. Thus, to describe the

streamline pattern properly, we need to find a frame of reference that follows each eddy as it accelerates in its travel

downstream. To simply choose some moving frame by hand would be really complicated and the observations would be

strongly biased, so we proposed another solution. We can always decompose the incompressible velocity field (in a

frame of reference moving with the cylinder) as follows u ¼ uv þ v, where uv is solenoidal and has the same curl as u, and
v is the irrotational and solenoidal (i.e., harmonic) component. We put forward that this task of advection, accelerating

the eddies to their final state of motion in the vortex street wake itself, is accomplished by the irrotational, solenoidal

part, v, of the full velocity field u. In other words, we propose to assign to v this task of advection of the eddy structures

defined by the streamline pattern in uv. Thus, whilst v is responsible for the advection of the vortex structures as a whole,

uv is responsible for the advection of vorticity inside the vortex structure, which gives the internal rearrangement of

vorticity within the vortex core. For prescribed velocity conditions on the boundary of the analysis domain, v is

uniquely determined (Batchelor, 2000, Section 2.7). Now v (which is easy to compute) and then uv ¼ u� v are both

uniquely determined.

After identifying the eddy structure the shear layers are rolling-up around, the physical mechanisms of vorticity

transport that operate inside this eddy structure are analyzed. In Fig. 2 we see a schematized version of the process

where the shear layer of positive vorticity starts to roll-up around the incipient eddy on the lower right of the body

(in this case, a cylinder) until the core of this eddy has produced a (roughly) homogeneous distribution of vorticity
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Fig. 2. Schematic view of the roll-up of a vortex-core.
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all around its periphery. The amount of time required to form this homogeneous core of vorticity is, in essence, half a

period of the shedding cycle. We shall use this schema to estimate the various terms appearing in the vorticity transport

equation (for two-dimensional flow),

qo
qt
þ u � =o ¼ nr2o. (3)

Referring to Fig. 2 the homogenization is carried on by the transport of vorticity along the periphery of the core from

the high-vorticity zone at the head of the rolling shear layer (zone A) to the low-vorticity zone at the opposite side of the

core ring (zone B). Two mechanisms act simultaneously: advection, which takes place mainly around the core, and

diffusion, which acts mainly in the radial direction outward from the core. These two mechanisms have opposing effects

on the homogenization. While advection is trying to build up the core, diffusion tends to spread out the vorticity before it

can arrive at zone B.

In terms of (3), a suitable estimate for the rate of change of vorticity at zone B is ðoH � oLÞf , where f is the shedding

frequency. We move the remaining advective derivative to the right-hand side and estimate it by UðoH � oLÞ=‘, where
U is the free stream speed, and ‘ is a characteristic length scale associated to the radius of the vortex-core ring for which

we adopted the diameter of the cylinder D. This term gives the rate of intrinsic rearrangement (homogenization) within

the core. We see that the advective velocity must generally point opposite to the gradient of vorticity so the term acts as

a source term for vorticity build-up. Finally, the diffusive sink of vorticity ðnr2o ¼ n= � =oÞ produces a term that may

be estimated as �nðoH � oLÞ=ð‘doÞ, where do is the length scale related with the vorticity gradient taken across the

shear layer and ‘ is the length scale related with the divergence. There is strong evidence that do=D�1=
ffiffiffiffiffiffi
Re
p

. The

separating shear-layer thickness d will depend on the growth of the boundary layer on the forward part of the cylinder

which, subject to a boundary layer approximation, gives d=D�1=
ffiffiffiffiffiffi
Re
p

(Williamson and Brown, 1998). Bloor (1964) also

assumed this relationship and showed that the shear layer instability frequency scaled approximately with 1=
ffiffiffiffiffiffi
Re
p

.

Williamson and Brown (1998) include measured values of do for the laminar and other regimes together for Re up to

1200, showing close comparison with the formula do=D ¼ 4:217=
ffiffiffiffiffiffi
Re
p

. Then, collecting these estimates in an equation

by introducing two dimensionless constants, ka for the advective process and kd for the diffusive process, we obtain

ðoH � oLÞf ¼ kaU
ðoH � oLÞ

D
� kdn

ðoH � oLÞ

D2

ffiffiffiffiffiffi
Re
p

. (4)

Simple algebra then gives

fD

U
¼ ka � kd

n
UD

ffiffiffiffiffiffi
Re
p

, (5)

or, in terms of the Strouhal and Reynolds numbers,

St ¼ ka �
kdffiffiffiffiffiffi
Re
p . (6)

3. Concluding remarks

It is significant that (6) matches not only the expression for the two-term
ffiffiffiffiffiffi
Re
p

-formula in the laminar regime, but also

the
ffiffiffiffiffiffi
Re
p

-fit to the experimental data in the mild turbulent regime known as ‘‘Mode B’’ (Williamson and Brown, 1998;

Williamson, 1988b). Mode B covers what is also known as the TrW2 (upper transition-in-wake) and TrSL1 (lower

transition-in-shear-layers) regimes (Zdravkovich, 1997). Mode B is characterized by the appearance of fine-scale

streamwise vortex structures in the near wake. The transition from laminar shedding to Mode B is located between

Re ¼ 230 and 260. At Re ¼ 260, the primary wake instability behaves remarkably like the laminar shedding mode, with

the exception of the presence of the fine-scale streamwise vortex structures (Williamson, 1996). As Re is then increased,

the fine-scale three dimensionality becomes increasingly disordered.

In Mode B, the eddies are turbulent, and this change in the flow is likely to change the values of both scaling

constants ka and kd from those obtained for the laminar regime, but the scaling itself appears to remain valid. For long-

span cylinders we have many of these fine-scale streamwise vortex structures distributed along the span [the spanwise

length scale is around one diameter (Williamson, 1996)]. This allows us to interpret their effect in a span-averaged way.

Thus, even though Mode B is clearly a three-dimensional phenomenon, our two-dimensional model appears to cover it

as well. Williamson and Brown (1998) applied the
ffiffiffiffiffiffi
Re
p

-formulation to the frequency data for Mode B finding that

St ¼ 0:2234þ 0:3490=
ffiffiffiffiffiffi
Re
p

gives an average error-of-fit of only 0.0005. Fig. 3 [taken from Williamson and Brown

(1998)] shows how the St–Re data are essentially represented very well by two
ffiffiffiffiffiffi
Re
p

-formulae up to (at least) Re ¼ 1200.
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Fig. 3. Fit of
ffiffiffiffiffiffi
Re
p

-formulae to the laminar and mild turbulent regimes up to Re ¼ 1200. [Taken from Williamson and Brown (1998)].
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Between Re � 178 and 260, the primary shedding vortices become unstable to a spanwise waviness [termed as Mode

A (Williamson, 1988b)], corresponding with curve A in Fig. 3. The application of our model to Mode A, also known as

TrW1 (lower transition-in-wake) regime (Zdravkovich, 1997), was treated in detail in Ponta and Aref (2004).
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